CSCI 7000 Fall 2023: Problems on Exponential Generating Functions

Joshua A. Grochow

Released: September 28, 2023
Due: Monday Oct 2, 2023

Recall: the exponential generating function of a sequence a_{n} is the power series $\sum_{n \geq 0} \frac{a_{n}}{n!} x^{n}$.

1. Let $a_{n}=$ the number of permutations of a set of size n. What is the exponential generating function for a_{n} ? (Hint: it has a closed form as a rational function.)
2. A (labeled) cycle of length n can be thought of in at least two ways: Way 1 , as an assignment of the numbers $\{1, \ldots, n\}$, each exactly once, to the vertices of the cycle graph on n vertices; Way 2: as an equivalence class of labeled sequences, where two such sequences are considered equivalent if one can be gotten from the other by cyclically shifting the positions of the numbers (when a number "shifts" of the end of the list, it reappears at the beginning). We denote cycles with parenthesis, e.g. $(1,2,3)$ and $(3,1,2)$ are the same cycle, but $(1,3,2)$ is different.

Let $c_{n}=$ the number of cycles of length $n .\left(c_{0}=0, c_{1}=1\right.$.) What is the exponential generating function for c_{n} ? What analytic function is this the power series of?
3. Suppose \mathcal{S}_{n} is a set of labeled objects of "size" n, for each $n=$ $0,1,2,3, \ldots$, and suppose $A(x)$ is the exponential generating function for the sequence $\left|\mathcal{S}_{n}\right|$. Using the product rule for exponential generating functions, prove that the exponential generating function for labeled sets of elements of $\mathcal{S}=\bigcup_{n \geq 0} \mathcal{S}_{n}$ is $\exp (A(x))$.
4. A labeled sequence of length n is a list of length n, containing each of the integers $\{1, \ldots, n\}$ exactly once. We denote labeled sequences
using square brackets, e.g. $[1,2,3]$ and $[3,1,2]$ are two distinct labeled sequences.
A labeled set of cycles of total length n is a set of cycles (of varying lengths), the sum of whose lengths is n, such that each cycle is labeled by a disjoint set of numbers, and the union of the labels is $\{1, \ldots, n\}$. We denote sets of cycles by concatenating cycles, e.g. $(1,2,3)(4,5)$ denotes a set of cycles of total length 5 , consisting of two cycles, one a 3 -cycle, and one a 2 -cycle. Note that the ordering of cycles doesn't matter, that is, $(1,2,3)(4,5)=(4,5)(1,2,3)=(4,5)(3,1,2)$.

Give a bijection between labeled sequences of length n, and labeled sets of cycles of total length n.
5. Use the results of Questions 4, 3, and 1 to give an alternative, very quick, generating-function derivation of the answer to Question 2.

Resources

- Generatingfunctionology pp. 40-42 for rules for composing exponential generating functions.
- Flajolet \& Sedgewick Chapter II for labeled structures and operations on exponential generating functions. Especially pp. 102-103 for sequences, sets, and cycles, and Section II. 4 for permutations.

